If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+63t+4.1=0
a = -16; b = 63; c = +4.1;
Δ = b2-4ac
Δ = 632-4·(-16)·4.1
Δ = 4231.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-\sqrt{4231.4}}{2*-16}=\frac{-63-\sqrt{4231.4}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+\sqrt{4231.4}}{2*-16}=\frac{-63+\sqrt{4231.4}}{-32} $
| 78+3x/x=2,5 | | (78+3x)/x=2,5 | | 3x-1=-2x-11 | | 7y-42y+11=95 | | 4=-8/9+v | | 2x7-311=1 | | 9x-4/5=x+4 | | 1/4(4a+20)=6-a | | -2v/9=10 | | 5(x+1)=3(x-2 | | 2x5=87 | | X+11+2x-20=70 | | 68-2x=9x-4 | | 8x=28-4 | | |9x-25|=43 | | 4(3)+y=-6 | | (-0.91652154791)x=1500 | | -2x-3=28 | | 5/9x-4/3=1/3 | | 9n=6/17 | | 12/7x-1=35 | | W2+15w-286=0 | | 4g=17.52 | | 9c=5(5)-160 | | 9c=5) | | 8.6/15=-d | | W^2+15w-286=0 | | 1/2^w-12=18 | | y^2-3y=y(y-3) | | 15=m/17 | | 2x+3Y=-43x+4Y=0 | | 33=x•3 |